skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Herrera, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Faggioli, G; Ferro, N; Galušcáková, P; Herrera, A (Ed.)
  2. Faggioli, G; Ferro, N; Galuščáková, P; Herrera, A (Ed.)
    The MEDVQA-GI challenge addresses the integration of AI-driven text-to-image generative models in medical diagnostics, aiming to enhance diagnostic capabilities through synthetic image generation. Existing methods primarily focus on static image analysis and lack the dynamic generation of medical imagery from textual descriptions. This study intends to partially close this gap by introducing a novel approach based on fine-tuned generative models to generate dynamic, scalable, and precise images from textual descriptions. Particularly, our system integrates fine-tuned Stable Diffusion and DreamBooth models, as well as Low-Rank Adaptation (LORA), to generate high-fidelity medical images. The problem is around two sub-tasks namely: image synthesis (IS) and optimal prompt production (OPG). The former creates medical images via verbal prompts, whereas the latter provides prompts that produce high-quality images in specified categories. The study emphasizes the limitations of traditional medical image generation methods, such as hand sketching, constrained datasets, static procedures, and generic models. Our evaluation measures showed that Stable Diffusion surpasses CLIP and DreamBooth + LORA in terms of producing high-quality, diversified images. Specifically, Stable Diffusion had the lowest Fréchet Inception Distance (FID) scores (0.099 for single center, 0.064 for multi-center, and 0.067 for combined), indicating higher image quality. Furthermore, it had the highest average Inception Score (2.327 across all datasets), indicating exceptional diversity and quality. This advances the field of AI-powered medical diagnosis. Future research will concentrate on model refining, dataset augmentation, and ethical considerations for efficiently implementing these advances into clinical practice. 
    more » « less
  3. Faggioli, G; Ferro, N; Galuščáková, P; Herrera, A (Ed.)
    In the ever-changing realm of medical image processing, ImageCLEF brought a newdimension with the Identifying GAN Fingerprint task, catering to the advancement of visual media analysis. This year, the author presented the task of detecting training image fingerprints to control the quality of synthetic images for the second time (as task 1) and introduced the task of detecting generative model fingerprints for the first time (as task 2). Both tasks are aimed at discerning these fingerprints from images, on both real training images and the generative models. The dataset utilized encompassed 3D CT images of lung tuberculosis patients, with the development dataset featuring a mix of real and generated images, and the test dataset. Our team ’CSMorgan’ contributed several approaches, leveraging multiformer (combined feature extracted using BLIP2 and DINOv2) networks, additive and mode thresholding techniques, and late fusion methodologies, bolstered by morphological operations. In Task 1, our optimal performance was attained through a late fusion-based reranking strategy, achieving an F1 score of 0.51, while the additive average thresholding approach closely followed with a score of 0.504. In Task 2, our multiformer model garnered an impressive Adjusted Rand Index (ARI) score of 0.90, and a fine-tuned variant of the multiformer yielded a score of 0.8137. These outcomes underscore the efficacy of the multiformer-based approach in accurately discerning both real image and generative model fingerprints. 
    more » « less